This book deals with Riemannian manifolds for which the nullity space of the curvature tensor has codimension two. These manifolds are "semi-symmetric spaces foliated by Euclidean leaves of codimension two" in the sense of Z I Szabo. The authors concentrate on the rich geometrical structure and explicit descriptions of these remarkable spaces. Also parallel theories are developed for manifolds of "relative conullity two". This makes a bridge to a survey on curvature homogeneous spaces introduced by I M Singer. As an application of the main topic, interesting hypersurfaces with type number two in Euclidean space are discovered, namely those which are locally rigid or "almost rigid". The unifying method is solving explicitly particular systems of nonlinear PDE.
This book deals with Riemannian manifolds for which the nullity space of the curvature tensor has codimension two. These manifolds are “semi-symmetric spaces foliated by Euclidean leaves of codimension two” in the sense of Z I Szabó. The authors concentrate on the rich geometrical structure and explicit descriptions of these remarkable spaces. Also parallel theories are developed for manifolds of “relative conullity two”. This makes a bridge to a survey on curvature homogeneous spaces introduced by I M Singer. As an application of the main topic, interesting hypersurfaces with type number two in Euclidean space are discovered, namely those which are locally rigid or “almost rigid”. The unifying method is solving explicitly particular systems of nonlinear PDE.
Get Riemannian Manifolds Of Conullity Two by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by World Scientific Publishing Co Pte Ltd and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment