A monograph that gives applications to topics in locally convex spaces and vector-valued measures.
If λ is a space of scalar-valued sequences, then a series ∑j xj in a topological vector space X is λ-multiplier convergent if the series ∑j=1∞ tjxj converges in X for every {tj} ελ. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in ι1 are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers.
Get Multiplier Convergent Series by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by World Scientific Publishing Co Pte Ltd and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment